Mark schemes

-	4	
"	7	
w	_	٠.

(a) **Level 3:** A judgement, strongly linked and logically supported by a sufficient range of correct reasons, is given.

3-4

Level 2: Some logically linked reasons are given. There may also be a simple judgement.

0

No relevant content

1-2

Indicative content

reasons

- compound A (potassium chloride) only contains potassium
- compound A (potassium chloride) is the only source of potassium so is needed.
- compound B (ammonium nitrate) only contains nitrogen
- compound B (ammonium nitrate) contains more nitrogen than compound C (diammonium hydrogen phosphate) so is preferable
- compound B (ammonium nitrate) contains more nitrogen and is cheaper than compound C (diammonium hydrogen phosphate) and so is more cost effective
- compound C (diammonium hydrogen phosphate) contains phosphorus which is not needed

judgement

- none of the compounds contain both nitrogen and potassium so a mixture is needed
- (both) compound A (potassium chloride) and B (ammonium nitrate) should be used
- (both) compound A (potassium chloride) and C (diammonium phosphate) could be used
- (b) mining

allow quarrying

1

(c) potassium sulfate

ignore potassium chloride allow potassium nitrate allow any other named potassium salt

1

(d) ammonia

allow water

1

1

1

(e) (phosphate rock is) insoluble (in water)

allow (phosphate rock) cannot be absorbed as a

(f) (sulfuric acid) calcium sulfate

allow single superphosphate allow calcium phosphate

(phosphoric acid)
calcium phosphate

allow triple superphosphate

[10]

Q2.		
(a)	(nitrogen) air	
	allow atmosphere	1
	(hooden ware) material man	1
	(hydrogen) natural gas allow methane	
	allow water / steam	
	anow water / Gloan	1
(b)	there is only one product	
		1
(c)	(mixture is) cooled	1
		1
	(so that only) ammonia liquefies	
	allow (so that only) ammonia condenses	1
(d)	scale labelled at 100, 200, 300 and 400 (atm)	
(4)	allow scale labelled at 50, 150, 250 and 350 (atm)	
		1
	all five points plotted correctly	
	allow a tolerance of $\pm \frac{1}{2}$ a small square	
	allow 1 mark for three / four points plotted correctly	2
		-
	line of best fit	1
(e)	View with Figure 2	
(0)	_	
	extrapolation to 500 atmospheres	1
	manageta va valua et 500 etmanagehoras	
	percentage value at 500 atmospheres allow a tolerance of ± ½ a small square	
	anow a tolerance of ± 72 a small square	1
(f)	Level 3: Relevant points (reasons/causes) are identified, given in detail	
()	and logically linked to form a clear account.	
		5-6
	Level 2: Relevant points (reasons/causes) are identified, and there are attempts at logical linking. The resulting account is not fully clear.	
	attempts at logical linking. The resulting account is not fully clear.	3-4
	Level 1: Points are identified and stated simply, but their relevance is	
	not clear and there is no attempt at logical linking.	
		1–2
	No relevant content	Δ
		0

Indicative content

rate

- higher temperature gives higher rate because of more frequent collisions
- higher temperature gives higher rate because more particles have the activation energy
- higher pressure gives higher rate because of more frequent collisions
- use of catalyst gives higher rate because the activation energy is lowered

equilibrium

- higher temperature shifts the position of equilibrium to the left because reaction is exothermic
- higher pressure shifts the position of equilibrium to the right because more molecules on left-hand side
- use of catalyst has no effect on the position of equilibrium

other factors

- higher temperature (than 450°C) uses more energy so increases costs
- higher pressure (than 200 atmospheres) uses more energy so increases costs
- higher pressure (than 200 atmospheres) requires stronger reaction vessels so increases costs
- use of a catalyst reduces energy costs

compromise

- the temperature chosen is a compromise between rate of reaction and position of equilibrium
- the temperature chosen is a compromise between rate and cost
- the pressure chosen is a compromise between yield / rate and cost

PhysicsAndMathsTutor.com